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Abstract
On a family of classical dynamical systems on the 2-torus, we perform
a discretization procedure similar to the anti-Wick quantization. Such a
discretization is performed by using a particular class of states, fulfilling an
appropriate dynamical localization property, typical of quantum coherent states.
The same set of states is involved in the construction of a quantum entropy,
that we test on the discrete approximants; a correspondence with the classical
metric entropy of Kolmogorov–Sinai is found only over time scales that are
logarithmic in the discretization parameter.

PACS numbers: 05.45.Ac, 05.45.Mt, 03.65.Fd, 45.05.+x
Mathematics Subject Classification: 37D20, 54C70, 28D20, 81Q20, 81R30

1. Introduction

Under the term classical chaos is included a rich phenomenology of classical dynamical
systems on a compact phase space characterized by a high sensitivity to initial conditions:
if very small initial errors exponentially amplify during the temporal evolution, the systems
is called chaotic [1–7]. Nevertheless, the motion being confined within a bounded region,
the exponential divergence of trajectories has to be tested in a finite domain. This leads
to defining the (maximal) coefficient of such exponential amplification, which is called the
Lyapunov exponent, as ξ := limn→∞(1/n) limδ→0 log(δn/δ), where we consider the initial
error δ growing as δn under a discrete time evolution. When the amplification of errors is
exponential, the Lyapunov exponent ξ is positive and the system is classified as chaotic.
ξ = 0 is typical of regular time evolutions, but this also happens if we forbid δ to go to zero;
indeed, δn � � and lim 1

n
vanishes. This occurs for instance in the case of quantum dynamical

systems, where the uncertainty principle naturally endows the phase space with an h̄-dependent
granularity, and the δ → 0 limit cannot be achieved for finite h̄ > 0, but only if we perform the
classical limit h̄ → 0 before the time one. Although this shows the non-commutativity of the
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classical and the time limits [2, 6], the temporal evolution of a finite-dimensional quantization
compared with its classical counterpart exhibits good agreement on a time scale bounded by
the so-called breaking time τB(h̄): usually, when the classical system is chaotic, τB scales
logarithmically in h̄ [1, 2, 6, 8–10], whereas for regular systems the scaling is h̄−α for some
α > 0 [1].

A similar phenomenon can be observed in discrete classical systems, that are obtained for
instance by forcing a classical system to live on a square lattice of N2 points, whose minimal
spacing a = 1

N
acts as a lower bound for δ → 0: in this case, 1

N
plays in the discrete domain

the same role that h̄ plays in the quantum one and can be interpreted as a quantization-like
parameter.

By using this analogy of behaviour between quantum and discrete classical systems, the
study of the latter result is quite interesting and promising; indeed we can get all the benefits
arising from classicality, that is the simplicity due to commutativity, and deeply enquire into
the chaotic property in these kinds of ‘toy models’.

Since finite-dimensional quantizations of classical dynamical systems have an algebraic
formulation, this can be easily extended to discretization procedures when we restrict from
the full matrix algebra of bounded operators on a Hilbert space, typical of quantum systems,
to a commutative algebra of diagonal operators describing a classical system [11].

A very useful tool of the semiclassical analysis of quantum systems is represented by the
use of coherent states and a standard quantization scheme, the anti-Wick one [12], is based on
them: by mimicking this procedure we set up a discretization involving a class of states that
we will refer to as lattice states, suitably defined on our Hilbert space. Of course, in order to
have a good quantization, the classical limit h̄ → 0 has to be tested [13] and a large part of
this work has been devoted to giving and proving a consistent definition of a continuous limit
N → ∞, suited for a reasonable algebraic discretization scheme.

A first result in this direction is that the convergence of the discrete to the continuous
dynamics is due to a very special property of lattice states, that is known as the dynamical
localization property [14].

We apply our discretization procedure to a well-known class of classical systems [7] that
are represented by integer matrix action on the 2-torus; such systems can be rigorously divided
into three families, namely hyperbolic, parabolic and elliptic, characterized by different chaotic
properties. As expected, differences in the behaviour of the breaking times τB(N) (now of
discrete/continuous correspondence) are found in the three different regimes.

The Lyapunov exponent is zero on systems with a finite number of states (both discrete
and quantum) because it is an asymptotic quantity: an alternative approach is to enquire into
the chaotic properties of a system during its temporal evolution, and whether the system
exhibits some kind of finite-time chaos. For classical dynamical systems the Pesin–Ruelle
theorem [15] establishes a bridge between chaos and information, giving a relation between the
Kolmogorov–Sinai metric entropy and the sum of all positive Lyapunov exponents. Moreover,
although the metric entropy is defined as a (partial) entropy production in the long run
[7, 16], such a partial entropy can be observed and analysed even during the temporal evolution,
that is at finite times.

With the aim of using entropy to detect chaos, several quantum dynamical entropies
have been introduced. In a recent work [14], two of them, called CNT (Connes, Narnhofer
and Thirring) [17] and ALF (Alicky, Lindblad and Fannes) [18] are shown to converge to
the KS invariant (but only in a joint time and classical limit) when applied to the anti-Wick
quantization of the hyperbolic family of the classical dynamical systems mentioned above.
Only the hypothesis of dynamical localization for coherent states was used in obtaining that
result. Instead of extending such a result to our discretization scheme, we directly study
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another quantum dynamical entropy, constructed by means of coherent states and so-called
CS-quantum entropy [19].

What we show is that the CS-entropy production of a discrete classical system does
converge to the KS-entropy production of the continuous limit, but only over time scales
logarithmic in the quantization-like parameter 1

N
. This confirms the numerical results obtained

in [20] for the ALF-entropy on a similar class of discrete systems, but within the Weyl
quantization-like scheme instead of the anti-Wick.

Finally, we divided the CS-quantum entropy into its dynamical and measure-dependent
parts, and we show the latter does not play a role in the (positive) entropy rate.

2. Classical dynamical systems and phase-space discretization

The typical description of a classical dynamical system is given by means of a measure
space X , the phase space, endowed with the Borel σ -algebra of its measurable subsets and a
normalized measure µ (µ(X ) = 1). The probability that phase points belong to measurable
subsets E ⊆ X is given by the ‘volumes’ µ(E) = ∫

E
µ(dx); so the measure µ defines the

statistical properties of the system and represents a possible ‘state’.
Every reversible discrete time dynamics amounts to an invertible measurable map

T : X �→ X such that µ ◦ T = µ, and to its iterates {T k|k ∈ Z}: T-invariance of the
measure µ ensures that the state defined by µ can be taken as an equilibrium state with respect
to the given dynamics.

All phase trajectories passing through x ∈ X at time 0 can be encoded into sequences
{T kx}k∈Z [7].

Classical dynamical systems are thus conveniently described by measure-theoretic triplets
(X , µ, T ). In particular, in the present work, we shall focus upon the following choices:

X : the two-dimensional torus T
2 = R

2/Z
2 = {x = (x1, x2) ∈ R

2 (mod 1)};
µ: the Lebesgue measure, µ(dx) = dx1 dx2, on T

2;
T : the invertible measurable transformations on T

2 represented by a modular matrix
action, as follows:

T (x) =
(

t11 t12

t21 t22

)(
x1

x2

)
(mod 1),

tı ∈ Z, ∀ (ı, ) ∈ {1, 2}2

det(T ) = t11t22 − t21t12 = 1
(1a)

T −1(x) =
(

t22 −t12

−t21 t11

)(
x1

x2

)
(mod 1). (1b)

Remark 2.1.

(i) In the following, a point x of the torus will correspond to an equivalence class of R
2

points whose coordinates differ by integer values;
(ii) in (1) we use brackets to distinguish between the mere matrix action T · x and the

(mod 1) one T (x);
(iii) T = (2

1
1
1

)
is known as an Arnold cat map [7], and it is an element of SL2(Z) ⊂ GL2(Z) ⊂

M2(Z), where the latter is the subset of 2 × 2 matrices with integer entries, GL2(Z) is the
subset of invertible matrices and SL2(Z) is the subset of matrices with determinant 1;

(iv) the dynamics generated by T ∈ SL2(Z), that is the one we are focusing on, is called
unimodular group [7] (UMG for short);

(v) since det(T ) = 1, the Lebesgue measure µ is invariant for all T n ∈ SL2(Z), n ∈ Z.
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In order to develop an algebraic discretization procedure as in [21], it proves convenient to
follow an algebraic approach and replace (T2, µ, T ) with the algebraic triple

(
L∞

µ (T2), ωµ,	
)
,

where

L∞
µ (T2) is the (Abelian) von Neumann *-algebra of (equivalence classes of) essentially

bounded functions on T
2 [22, 23], equipped with the so-called essential supremum norm

‖·‖∞ [24];
ωµ is the state (expectation) on L∞

µ (T2), defined by the reference measure µ as

ωµ : L∞
µ (T2) 
 f �−→ ωµ(f ) :=

∫
T

2
µ(dx)f (x) ∈ R

+; (2)

	 is the automorphism of L∞
µ (T2) defined by 	j(f ) := f ◦ T j , satisfying ω ◦ 	j = ω.

2.1. Discretization of phase space

From an algebraic point of view, a discretization procedure very much resembles quantization.
Given the classical algebraic triple

(
L∞

µ (T2), ωµ,	
)
, the core of a quantization–dequantization

procedure (specifically an N -dimensional quantization) is twofold:

• finding a pair of *-morphisms, JN ,∞ mapping L∞
µ (T2) into a finite-dimensional algebra

MN (in general a full N × N matrix algebra) and J∞,N mapping MN backward into
L∞

µ (T2);
• providing an automorphism 	N , the quantum dynamics, acting on MN such that it

approximates in a suitable sense the classical one, 	, on L∞
µ (T2) as follows:

J∞,N ◦ 	
j

N ◦ JN ,∞ −→
N→∞

	j .

The latter requirement can be seen as a modification of the so-called Egorov property
(see [25]).

A similar procedure, that we will call discretization, can be obtained if we replace the full
matrix algebra MN with a finite Abelian one, namely the algebra DN consisting of N2 × N2

diagonal matrices.
In order to give to elements of DN the meaning of discrete observables, we define a

suitable Hilbert space: to do this, we consider a discretized version of (T2, µ, T ) which arises
by forcing the continuous classical system to live on a square lattice LN ⊆ T

2 of spacing 1
N

:

LN :=
{ p

N

∣∣∣p ∈ (Z/NZ)2
}

, (3)

where (Z/NZ) denotes the residual class (mod N), that is 0 � pi � N − 1.
Now we take the N := N2 points of LN as labels of the elements {|� 〉}�∈(Z/NZ)2 of an

orthonormal basis (o.n.b.) of the N -dimensional Hilbert space HN , and we consider discrete
algebraic triples (DN , τN ,	N ), consisting of

DN : an N × N matrix algebra diagonal in the orthonormal basis introduced above;
τN : the uniform state (expectation) on DN defined by

τN : DN 
 D �−→ τN (D) := 1

N
Tr(D) ∈ R

+; (4)

	N : an automorphism of DN suitably reproducing 	 when N −→ ∞ (see section 2.2).



Quantum dynamical entropies for discrete classical systems 6897

In particular, as the anti-Wick quantization can be obtained by means of coherent states
[12], a similar anti-Wick discretization of

(
L∞

µ (T2), ωµ,	
)

in (DN , τN ,	N ) can be performed
[21] once we specify what we consider as ‘coherent states’ on HN , and this is the purpose of
next section.

Intuitively, a discrete description of (T2, µ, T ) becomes finer when we increase N, the
number of points per linear dimension on the grid LN in (3): this corresponds to enlarging
the dimension of the Hilbert space HN associated with the corresponding algebraic triple
(DN , τN ,	N ). In this sense, the lattice spacing a := 1

N
of the grid LN is a natural discretization

parameter playing an analogous role to the quantization parameter h̄.

2.2. Lattice states on HN

In analogy with the properties of quantum coherent states, we shall look for analogous states
on the torus that we shall call lattice states [21]. For the benefit of the reader, we list below
the set of properties which make quantum coherent states such a useful tool in semiclassical
analysis.

Properties 2.1 (of quantum coherent states). A family {|CN (x)〉 | x ∈ T
2} ∈ HN of vectors,

indexed by points x ∈ T
2, constitutes a set of coherent states on the torus if it satisfies the

following requirements:

(1) Measurability: x �→ |CN (x)〉 is measurable on T
2;

(2) Normalization: ‖CN (x)‖2 = 1,x ∈ T
2;

(3) Completeness: N
∫

T
2 µ(dx)|CN (x)〉〈CN (x)| = 11;

(4) Localization: given ε > 0 and d0 > 0, there exists N0(ε, d0) such that for N � N0(ε, d0)

and d
T

2(x,y) � d0 one has N |〈CN (x), CN (y)〉|2 � ε.

The symbol d
T

2(x,y) used in the localization property stands for the length of the shorter
segment connecting the two points x,y ∈ T

2, namely we shall denote by

d
T

2(x,y) := min
n∈Z

2
‖x − y + n‖

R
2 (5)

the distance on T
2.

Remark 2.2 (topology of the UMG on the torus).

(i) Note that d
T

2(a, b) = ‖a − b‖
R

2 if ‖a − b‖
R

2 � 1
2 .

(ii) All the automorphisms T ∈ SL2(Z) defined in (1) act continuously on the torus, when
the topology is given by the distance (5).

Resorting to the decomposition T
2 
 x = ( 
Nx1�

N
,


Nx2�
N

)
+
( 〈Nx1〉

N
,

〈Nx2〉
N

)=: 
Nx�
N

+ 〈Nx〉
N

, where

·� and 〈·〉 denote the integer, respectively fractional, part of a real number, we now make use
of the definition of the family |CN (x)〉 of lattice states given in [21] that consists in associating
with points of T

2 specific lattice points (see [21], figure 1).

Definition 2.1 (lattice states). Given x ∈ T
2, we shall denote by x̂N the element of (Z/NZ)2

given by

x̂N = (x̂N,1, x̂N,2) := (⌊Nx1 + 1
2

⌋
,
⌊
Nx2 + 1

2

⌋)
, (6)

and call lattice states on T
2 the vectors |CN (x)〉 defined by

T
2 
 x �→ |CN (x)〉 := | x̂N 〉 ∈ HN . (7)
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The reader can check in [21] that family {|CN (x)} satisfies properties 1.1. In particular, in
the last proof, it is also shown that, due to our particular choice of lattice states, we have a
stronger localization than in property 2.1 (4), namely

(4′). Localization: given d0 > 0, there exists N0(d0) such that for N � N0(d0) and
d

T
2(x,y) � d0 one has 〈CN (x), CN (y)〉 = 0.

2.3. Anti-Wick discretization and its continuous limit on T
2

In order to study the continuous limit and, more generally, the quasi-continuous behaviour
of (DN , τN ,	N ) when N → ∞, we follow the semiclassical technique known as anti-
Wick quantization. Therefore, we start by choosing concrete discretization/dediscretization
*-morphisms.

Definition 2.2. Given the family of lattice states {|CN (x)〉} ∈ HN of the previous section, the
anti-Wick-like discretization scheme (AW, for short) is described by a one-parameter family
of (completely) positive unital map JN ,∞ : L∞

µ (T2) → DN

L∞
µ (T2) 
 f �→ N

∫
T

2
µ(dx)f (x)|CN (x)〉〈CN (x)| =: JN ,∞(f ) ∈ DN .

The corresponding dediscretization operation is described by the (completely) positive unital
map J∞,N : DN → L∞

µ (T2)

DN 
 X �→ 〈CN (x),XCN (x)〉 =: J∞,N (X)(x) ∈ L∞
µ (T2).

Both maps are identity preserving (unital) because of the conditions satisfied by the family
of lattice states and completely positive too, since both L∞

µ (T2) and DN are commutative
algebras. The reader can find in [14, 21] a list of simple properties of these maps that
incorporate minimal requests for rigorously defining the sense in which the discrete dynamical
systems (DN , τN ,	N ) tends to

(
L∞

µ (T2), ωµ,	
)
, when 1

N
→ 0.

3. Discretization of the dynamics

3.1. General properties of matrix actions on the plane

The next natural step in our discretization procedure will be the definition of a suitable discrete
dynamics 	N on the Abelian algebra DN of section 1.1. Before doing this we shall focus on
some basic properties of the (integer) matrix action on the plane that are

R
2 
 x �−→ T x =

(
t11 t12

t21 t22

)(
x1

x2

)
∈ R

2,
tı ∈ Z, ∀ (ı, ) ∈ {1, 2}2

det(T ) = t11t22 − t21t12 = 1.

Note that in this section we begin by considering integer matrices T, with determinant 1,
mapping the plane onto itself; in section 2.2, we will go back to actions on the torus T

2, as
in (1a).

Definitions 3.1 (families of matrix actions). We exclude from now on the cases T = ±112,
the identity on the plane, that are trivial. Depending on the trace of T we have three families
of maps, characterized by their spectral properties; in particular, denoting with t := Tr(T )

2 the

semi-trace of T, the eigenvalues are given by t ± √
t2 − 1 and we have

|t | > 1 (hyperbolic family). One eigenvalue of T, λ, is greater than 1 (in modulus)
and the other one is λ−1. In this case, distances are stretched along the direction of the
eigenvector |e+〉, T |e+〉 = λ|e+〉, contracted along that of |e−〉, T |e−〉 = λ−1|e−〉. The
(positive) Lyapunov exponent is given by ξ = log|λ|.
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|t | = 1 (parabolic family). There is only one eigenvalue, whose modulus is equal to 1,
which corresponds to an eigenvector |e0〉.
|t | < 1 (elliptic family). The two eigenvalues are conjugate complex numbers eiφ and
e−iφ , whose corresponding eigenvectors |e+〉 and |e−〉 are complex conjugate vectors of
C

2. On the (non-orthogonal) basis {|eR〉, |eI〉} := {Re(|e+〉), Im(|e+〉)}, T n is represented
by means of the rotation matrix

Rn =
(

cos(nφ) sin(nφ)

−sin(nφ) cos(nφ)

)
. (8)

Before exploring the properties of the three regimes given above, we now list some more

Definition 3.2. Let BT (0) := {x ∈ R
2|‖x‖

R
2 � 1} be the unitary ball on the plane and

BT (p) := {x ∈ R
2 | T −px ∈ BT (0)} (9)

be the p-evolved ball (p ∈ Z). Then define as

B
(n)
T

:=
n⋃

p=−n

BT (p) (10)

the union of all evolved balls from time −n up to time n (n ∈ N) and let D
(n)
T

:= diam
[
B

(n)
T

]
be its diameter, so that DT (p) := diam[BT (p)] will be the diameter of the p-evolved ball
(diam[E] := supx,y∈E‖x−y‖

R
2). Further, we denote by η the largest eigenvalue of the matrix

|T | =
√

T †T .

Using this notation we now list three propositions, one for each family, that incorporate the
main properties; a sketch of their proofs is given in appendix A.

Proposition 3.1 (hyperbolic family). Let T be a matrix belonging to the hyperbolic family of
definitions 3.1.

Without loss of generality, we choose |e+〉 and |e−〉 in such a way that the angle β from
the former to the latter lies in (0, π) and we fix an orthogonal reference system (x̂, ŷ) with
x-axis oriented along the eigenvector |e+〉: in such a system all orbits of the (discrete) group
{T k}k∈Z lie on hyperbolas

y2 cos β − xy sin β = const. (11)

The angle β, whose sine is positive according to our choice of |e+〉 and |e−〉, is related to η of
definitions 3.2 by

sin β = λ − λ−1

η − η−1
; (12)

moreover, for every n ∈ N, the set B
(n)
T is confined into the hyperbolic region delimited by the

four branches of the two hyperbolas

2y2 cos β − 2xy sin β − (cos β ± 1) = 0. (13)

For the diameters, we have

D
(n)
T = DT (n) = λn − λ−n

2 sin β

1 +

√
1 +

(
2 sin β

λn − λ−n

)2
 (14)

or, resorting to the expression for the Lyapunov exponent ξ given in definition 3.1:

sin β sinh
{
log
[
D

(n)
T

]} = sinh(nξ). (15)
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Moreover,

∀n ∈ N, D
(n)
T � λn

sin β
and D

(n)
T −−−−→

n−→∞
λn

sin β
. (16)

Proposition 3.2 (parabolic family). Let T be a matrix belonging to the parabolic family of
definitions 3.1.

We fix an orthogonal reference system (x̂, ŷ) with x-axis oriented along the eigenvector
|e0〉: in such a system all orbits of the (discrete) group {T k}k∈Z lie on the{

line y = const if t = +1
two lines y2 = const if t = −1.

(17)

For every n ∈ N the set B
(n)
T is confined into the stripe delimited by the two lines

y2 = 1. (18)

Resorting to η of definitions 3.2, we introduce a positive real parameter

J = η − η−1

2
(19)

that is used in the expression for the diameters, that is

D
(n)
T = DT (n) = nJ +

√
n2J 2 + 1 (20)

or, equivalently,

sinh
{
log
[
D

(n)
T

]} = nJ. (21)

Moreover,

∀n ∈ N, D
(n)
T � 2nJ + 1 (22)

and

D
(n)
T −−−−→

n−→∞ 2nJ. (23)

Proposition 3.3 (elliptic family). Let T be a matrix belonging to the elliptic family of
definitions 3.1; if the entries of this matrix are integer, it holds true:

∀n ∈ N, DT (n) � η, (24)

∀n ∈ N
+, D

(n)
T = η, (25)

where η is the one introduced in definitions 3.2.

3.2. Algebraic description of discretized UMG

Our aim is now to define a suitable discrete evolution 	N on DN (see section 2.1 for the
definitions), such that the discretized triplets (DN , τN ,	N ) converge to the continuous one(
L∞

µ (T2), ωµ,	
)
.

We start by introducing a new family of maps
{
U

j

T

}
j∈Z

, defined on the torus T
2([0, N)),

given by the action determined by the matrix T (mod N), that is

T
2([0, N)) 
 x �−→ U

j

T (x) := NT j
( x

N

)
∈ T

2([0, N)), j ∈ Z, (26)

where T (·) is the map defined in (1). The U
j

T (·) maps are extensions of the T j (·) maps on the
enlarged torus T

2([0, N)); moreover, they do map the lattice (Z/NZ)2 into itself, so that the
maps T j (·) do it with the lattice LN of (3).
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Note that the map (Z/NZ)2 
 � �−→ UT (�) ∈ (Z/NZ)2 is a bijection.

Definition 3.3. 	N will denote the map

DN 
 X �−→ 	N (X) :=
∑

�∈(Z/NZ)2

XUT (�),UT (�)|�〉〈�| ∈ DN .

The map 	N is a *-automorphism of DN ; indeed

	N (X) =
∑

U−1
T (s)∈(Z/NZ)2

Xs,s

∣∣U−1
T (s)

〉〈
U−1

T (s)
∣∣

= WT,N

 ∑
all equiv.

classes

Xs,s|s〉〈s|

W ∗
T ,N

= WT,NXW ∗
T ,N ,

where the operators WT,N , defined by linearly extending the maps

HN 
 |�〉 �−→ WT,N |�〉 := ∣∣U−1
T (�)

〉 ∈ HN (27)

to HN , are unitary: W ∗
T ,N |�〉 := |UT (�)〉. For the same reason, τN is a 	N -invariant state.

4. Continuous limit of the dynamics

One of the main issues in the semiclassical analysis is to compare if and how the quantum and
classical time evolutions mimic each other when the quantization parameter goes to zero.

In this paper, we are instead considering the possible agreement between the dynamics of
continuous classical systems and that of a class of discrete approximants. In practice, in our
case, we will study the difference

	j − J∞,N ◦ 	
j

N ◦ JN ,∞ (28)

which represents how much the discrete dynamics at time step j differs from the continuous
one at the same time step.

For quantum systems, whose classical limit is chaotic, the situation is strikingly different
from those with regular classical limit. In the former case, classical and quantum mechanics
agree, that is a difference as in (28) is negligible, only over times j which scale logarithmically
(and not as a power law) in the quantization parameter.

As we shall see, such kind of scaling is not exclusively related to non-commutativity;
in fact, the quantization-like procedure developed so far exhibits similar behaviour when
N → ∞ and we recover

(
L∞

µ (T2), ωµ,	
)

as a continuous limit of (DN , τN ,	N ).

4.1. Continuous limit of discretized UMG

We want to show that the difference in (28) goes to zero in a suitable topology, at least on
a certain time scale. Such scales, commonly called breaking times, depend on the family of
the considered map T. In the following, we give three different scaling functions of n, one per
each family of matrix action, that will be compared with log N in the joint limits in n and N
that we will construct in this section.
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Definition 4.1. We shall denote by �T (n) the scaling function of time associated with a map
T. In particular, in the different families of definition 3.1, it is given by

�T (n) =


log(λn) for the hyperbolic family of T
log n for the parabolic family of T
0 for the elliptic family of T.

We shall concretely show that the difference (28) goes to zero with N → ∞ in the strong
topology over the Hilbert space L2

µ(T2). More precisely, we have

Theorem 1. Let (DN , τN ,	N ) be a sequence of discretized dynamical systems as defined in
section 3: for all γ > 1,

∀f ∈ L∞
µ (T2), s-lim

j,N→∞
�T (j)<

log N

γ

(
	j − J∞,N ◦ 	

j

N ◦ JN ,∞
)
(f ) = 0, (29)

where the limit is in the strong topology over the Hilbert space L2
µ(T2).

The previous theorem indicates that the time limit and the continuous limit do not commute
in the parabolic and hyperbolic cases. In particular, the difference between the discretized
dynamics and the continuous one can be made small by increasing N, while it becomes large
beyond the time scale �T (j) � log N . This phenomenon is the same as in quantum chaos and
points to discretization of phase space (in the traditional semiclassical treatment of quantum
systems), rather than to non-commutativity, as the source of the so-called logarithmic breaking
time for hyperbolic systems. The constant γ is a form factor, which reflects the fine structure
of the dynamics: for instance, in the case of quantum cat maps [14], γ = 2.

For the elliptic case s-lim j,N→∞
�T (j)<

log N

γ

= s-lim j,N→∞
0<

log N

γ

means s-limj,N→∞; 0 < log N is just

a way to write that we do not consider any relation between j and N. We adopted this in order
to have uniformity among the notation in the three different families of matrix action.

The constraint j � C logN is typical of hyperbolic behaviour with Lyapunov exponent
log λ and comes heuristically as follows: the expansion of an initial small distance δ can be
exponential until the distance becomes the largest possible, namely δλTB � 1 (on the torus).
After discretization, the minimal distance gives δ = 1

N
, therefore one estimates TB � log N

log λ
,

which is called breaking time and sets the time scale over which continuous and discretized
dynamics mimic each other.

In quantum chaos, the semiclassical analysis leads to an estimate of TB exactly as above;
further, the logarithmic dependence on h̄ of TB is a signature of the hyperbolic character of the
classical limit. Conversely, if the classical limit is regular (parabolic and elliptic case), then
the time scale when quantum and classical behaviour is more or less indistinguishable goes in
general as h̄−b, b > 0.

The proof of theorem 1 consists of several steps, among which the most important
is a property, satisfied by our choice of lattice states, which we shall call dynamical
localization. We give a full proof that the lattice states satisfy such property, since it represents
a natural request that should be fulfilled by any consistent discretization/dediscretization
(quantization/dequantization) scheme; before giving the statement of the dynamical
localization condition, let us introduce one more

Definition 4.2. We shall denote by KN,n(x,y) the quantity

KN,n(x,y) := 〈CN (x) Wn
T,NCN (y)

〉 = 〈Un
T (x̂N), ŷN

〉
,
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where W
j

T,N is the unitary operator defined in (27) and {|CN (x)〉} is the set of LS of
definition 2.1.

Theorem 2 (dynamical localization with {|CN (x)〉} states). For every γ > 1 and d0 > 0,
there exists N0 = N0(γ, d0) ∈ N

+ with the following property: if N > N0 and �T (n) <
log N

γ
,

then

d
T

2(T n(x),y) � d0 �⇒ KN,n(x,y) = 0,

for all x,y ∈ T
2, where KN,n(x,y) are those of definition 4.2 and the scaling function of

time �T (n) has been introduced in definition 4.1.

In analogy to the quantum case, dynamical localization is what one expects from a good choice
of states suited to the study of the continuous limit: in fact, it essentially amounts to asking
that LS remain decently localized around the continuous trajectories while evolving with the
corresponding discrete evolution. As we shall see, this is the case only in time such that
�T (n) < (log N)/γ . Informally, when N → ∞, the quantities KN,j (x,y) should behave as
if N |KN,j (x,y)|2 � δ(T j (x) − y) and this is the content of the, next proposition 4.1 which
will be used in section 5.4.

This would make the discretization analogous to the notion of regular quantization
described in section V of [19]. Actually, with our choice of LS, the quantity KN,j (x,y)

is a Kronecker delta.

Proposition 4.1. Using the same notation as for theorem 2 we have that, for any given real
number γ > 1 and f ∈ L∞

µ (T2), it holds true:

lim
n,N→∞

�T (n)<
log N

γ

$$$$N ∫
T

2
f (y)|KN,n(·,y)|2 µ(dy) − f (T n(·))

$$$$
2

= 0,

where ‖·‖2 denotes the L2
µ(T2)-norm.

Proof. The equation of the statement can be expressed in terms of the discretization–
dediscretization operators JN ,∞ and J∞,N of definition 2.2, the discrete evolution
automorphism 	N of definition 3.3 and the continuous one 	 of section 2 as follows:

lim
n,N→∞

�T (n)<
log N

γ

∥∥(	n − J∞,N ◦ 	n
N ◦ JN ,∞

)
(f )
∥∥

2 = 0.

The last equation is proved in the proof of theorem 1 (see (44)). �

In order to prove theorem 2, we need the following auxiliary result.

Proposition 4.2. Resorting to the distance (5), x̂N of definition 1.1, UT of (26) and (λ, β, J, η)

used in propositions 3.1–3.3, the following three statements hold:
For x ∈ T

2 and n ∈ N
+

(1) if T is hyperbolic and N > Ñhyp(n) := √
2 λn

sin β

then d
T

2

(
T p(x),

U
p

T (x̂N)

N

)
� Ñhyp(n)

2N
, ∀p � n; (30)

(2) if T is parabolic and N > Ñpar(n) := √
2 (2nJ + 1)

then d
T

2

(
T p(x),

U
p

T (x̂N)

N

)
� Ñpar(n)

2N
, ∀p � n; (31)
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(3) if T is elliptic and N > Ñell := √
2η

then d
T

2

(
T p(x),

U
p

T (x̂N)

N

)
� Ñell

2N
, ∀p � n. (32)

Proof. For every real number t, we have 0 � 〈Nt + 1/2〉 = Nt + 1/2 − 
Nt + 1/2� < 1, so
that

∣∣t − 
Nt+1/2�
N

∣∣ � 1
2N

,∀t ∈ R. From (6) in definition 2.1, we derive

d
T

2

(
x,

x̂N

N

)
� 1√

2N
, ∀x ∈ T

2. (33)

Let us start by proving the first statement, the other being very similar to it. Using the definition
of UT given in (26), we write$$$$T p(x) − U

p

T (x̂N)

N

$$$$
R

2
=
$$$$T p(x) − T p

(
x̂N

N

)$$$$
R

2
=
$$$$T p

(
x − x̂N

N

)$$$$
R

2
, (34)

where in the latter equality we applied the linearity of T (·). As (16) was the maximum allowed
spreading for the unit ball BT (0) under the action of n power of the matrix T, now we have$$$$T p

(
x − x̂N

N

)$$$$
R

2
� λp

sin β

$$$$x − x̂N

N

$$$$
R

2
� 1√

2N

λn

sin β
, (35)

indeed p � n and we applied (33) together with remark 2.2 (i). In order to replace the first
norm in (34) with the toral distance, we apply once more the same remark 2.2 (i), providing
that 1√

2N

λn

sin β
� 1

2 , that is N � Nhyp(n).
The other statements (31)–(32) are proved in the same way, substituting in (35)

the right expression for the diameters, given for parabolic and elliptic cases from (22),
respectively (24). �

Proof of theorem 2. Using the definition of {|CN (x)〉} in (7), we easily compute〈
CN (x)

∣∣Wn
T,NCN (y)

〉 = 〈x̂N

∣∣U−n
T (ŷN)

〉 = δ
(N)

Un
T (x̂N ),ŷN

. (36)

Using the triangular inequality, we get

d
T

2

(
Un

T (x̂N)

N
,
ŷN

N

)
� d

T
2(T n(x),y) − d

T
2

(
T n(x),

Un
T (x̂N)

N

)
− d

T
2

(
ŷN

N
,y

)
. (37)

Now we split the proof and we begin by focusing on the

Hyperbolic case. Since d
T

2(T n(x),y) � d0 by hypothesis, using (33) of the proof of
proposition 4.2 and (30), that is

N > Ñhyp(n) �⇒ d
T

2

(
T n(x),

Un
T (x̂N)

N

)
� 1√

2N

λn

sin β
, (38)

we can derive from (37) that d
T

2

(Un
T (x̂N )

N
,

ŷN

N

)
� d0 − 1√

2N

λn

sin β
− 1√

2N
.

The rhs of the previous inequality can always be made strictly greater than zero,

d
T

2

(
Un

T (x̂N)

N
,
ŷN

N

)
> 0, (39)

by choosing an N greater than

NM(n) = max

{
1

d0

√
2

(
1 +

λn

sin β

)
, Ñhyp(n) =

√
2

λn

sin β

}
, (40)

so that the condition on the lhs of (38) is also satisfied. From (36) and (39), we have

N > NM(n) �⇒ 〈
CN (x)

∣∣Wn
T,NCN (y)

〉 = 0. (41)
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Indeed, if the toral distance between two grid points (ẑN, ŵN) is different from zero, they
cannot be equal (mod N) and so the periodic Kronecker delta in (36) vanishes.

Since the (non-decreasing) function NM(n) in (40) is eventually bounded by λγn (γ being
strictly greater than one), we define n as the time when NM(n) = λγn =: N0, and choose
N > N0. Thus, if 0 < n < n, then N > N0 = NM(n) > NM(n), whereas if n � n < 1

γ

log N

log λ
,

then N > λγn > NM(n) and (41) holds for all 0 < n < 1
γ

log N

log λ
, that is �T (n) <

log N

γ
as in the

statement.

Parabolic case. Using now (31), that is

N > Ñpar(n) �⇒ d
T

2

(
T n(x),

Un
T (x̂N)

N

)
� 1√

2N
(2nJ + 1), (42)

we obtain from (37) that d
T

2

(Un
T (x̂N )

N
,

ŷN

N

)
� d0 − 1√

2N
(2nJ + 1) − 1√

2N
.

The rhs of the previous inequality can be made strictly greater than zero, by choosing an
N greater than

NM(n) = max

{√
2

d0
(nJ + 1), Ñpar(n) =

√
2(2nJ + 1)

}
, (43)

so that the condition on the lhs of (42) is also satisfied. Reasoning as for the hyperbolic case,
we conclude that (41) still holds true in this case and we choose nγ as the bounding function
of the (non-decreasing) NM(n) of (43).

Finally, as for the hyperbolic case, we define n as the time when NM(n) = nγ =: N0,
and choose N > N0. Thus, if 0 < n < n, then N > N0 = NM(n) > NM(n), whereas if
n � n < N

1
γ , then N > nγ > NM(n) and (41) holds for all 0 < n < N

1
γ , that is �T (n) <

log N

γ

as in the statement.

Elliptic case. The same strategy adopted in the previous two cases now leads us to define
a new NM, independent of n, given by NM = max

{
1

d0
√

2
(η + 1), Ñell(n) = η

√
2
}
; thus, for

N > NM, the periodic Kronecker delta in (36) vanishes.
The absence of a relation between N and n, for N > NM, is expressed in the relation

�T = 0 <
log N

γ
, always true for all N. �

We are finally in a position to conclude with

Proof of theorem 1. We will concentrate on the case of continuous f , that is f ∈ C0(T2)(⊂ L2
µ(T2)

)
; the extension to essentially bounded f is straightforward and can be realized by

applying Lusin’s theorem [23, 24, 26], as the reader can see in [21].
Let f ∈ C0(T2) and Opj,N (f ) := (	j − J∞,N ◦ 	

j

N ◦ JN ,∞
)
(f ): note that Opj,N (f ) is

a multiplication operator on L2
µ(T2), but also an L∞

µ (T2) (and thus also an L2
µ(T2)) function.

According to (29), we must show that

∀g ∈ L2
µ(T2), lim

j,N→∞
�T (j)<

log N

γ

‖Opj,N (f )g‖
2

= 0.

Using Schwartz’s inequality first with g in the class of simple functions and then using their
density in L2

µ(T2), we have just to show that

lim
j,N→∞

�T (j)<
log N

γ

‖Opj,N (f )‖
2

= 0. (44)

In [21] it is shown that

‖Opj,N (f )‖2
2

= ωµ(|f |)2 + τN [JN ,∞(f )∗JN ,∞(f )] − 2 Re(Ij,N (f )),
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with

Ij,N (f ) := τN
[
(JN ,∞ ◦ 	j)(f )∗

(
	

j

N ◦ JN ,∞
)
(f )
]

= N
∫

T
2
µ(dx)

∫
T

2
µ(dy)f (y)f (T j (x))

∣∣〈CN (x),W
j

T,NCN (y)
〉∣∣2,

and that τN [JN ,∞(f )∗JN ,∞(f )] −→ ωµ(|f |2) for large N; so now the strategy is to prove
that also Ij,N (f ) goes to ωµ(|f |2) = ∫

T
2 µ(dx)|f (x)|2 when j,N → ∞ with �T (j) <

log N

γ
.

We want to prove that the difference∣∣∣∣Ij,N (f ) −
∫

T
2
µ(dy)|f (y)|2

∣∣∣∣
=
∣∣∣∣∫

T
2
µ(dx)

∫
T

2
µ(dy)f (y)(f (T j (x)) − f (y))N

∣∣〈CN (x),W
j

T,NCN (y)
〉∣∣2∣∣∣∣

is negligible for large N: selecting a ball B(T j (x), d0), one derives

�
∣∣∣∣∫

T
2
µ(dx)

∫
B(T j (x),d0)

µ(dy)f (y)(f (T j (x)) − f (y))N
∣∣〈CN (x),W

j

T,NCN (y)
〉∣∣2∣∣∣∣

+

∣∣∣∣ ∫
T

2
µ(dx)

∫
T

2\B(T j (x),d0)

µ(dy)f (y)(f (T j (x))

− f (y))N
∣∣〈CN (x),W

j

T,NCN (y)
〉∣∣2∣∣∣∣.

Applying the mean value theorem in the first double integral, we get that ∃c ∈ B(T j (x), d0)

such that∣∣∣∣Ij,N (f ) −
∫

T
2
µ(dy)|f (y)|2

∣∣∣∣ � ∫
T

2
µ(dx)|f (c)(f (T j (x)) − f (c))|

×
∫

B(T j (x),d0)

µ(dy)N
∣∣〈(W ∗

T ,N

)j
CN (x), CN (y)

〉∣∣2
+ 2‖f ‖ 2

0

∫
T

2
µ(dx)

∫
T

2\B(T j (x),d0)

µ(dy)N
∣∣〈CN (x),W

j

T,NCN (y)
〉∣∣2,

where we used the uniform norm ‖·‖0, indeed f ∈ C0(T2). Finally, using completeness and
normalization (properties 2.1), we arrive at the upper bound

�‖f ‖0 sup
z∈T

2

c∈B(z,d0)

|(f (z) − f (c))| + 2‖f ‖ 2
0 N sup

x∈T
2

y �∈B(T j (x),d0)

∣∣〈CN (x),W
j

T,NCN (y)
〉∣∣2.

By uniform continuity, the first term can be made arbitrarily small, provided we choose d0 small
enough. For the second integral, we use theorem 2, which provides us with N0 = N0(γ, d0)

depending on the same d0, such that the second term vanishes for all N > N0 and for all j

such that �T (j) <
log N

γ
. �

5. Dynamical entropy on discrete systems

Dealing with hyperbolic systems, one expects the instability proper to the presence of a
positive Lyapunov exponent to correspond to some degree of unpredictability of the dynamics:
classically, the metric entropy of Kolmogorov–Sinai provides the link [27].
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5.1. A classical one: Kolmogorov–Sinai metric entropy

For continuous classical systems (X , µ, T ) such as those introduced in section 2, the
construction of the dynamical entropy of Kolmogorov–Sinai is based on subdividing X into
measurable disjoint subsets {E�}�=1,2,...,D such that

⋃
� E� = X which form finite partitions

(coarse graining s) E .
Under the action of dynamical maps T in (1), any given partition E evolves into T −j (E)

with atoms T −j (E�) = {x ∈ X : T j (x) ∈ E�}; one can then form finer partitions
E[0,n−1] := ∨n−1

j=0 T j (E) whose atoms Ei0i1···in−1
:= ⋂n−1

j=0 T −jEij have volumes µi0i1···in−1
:=

µ
(
Ei0i1···in−1

)
.

Definition 5.1.

(1) We shall set i = {i0i1 · · · in−1} and denote by �n
D the set of Dn n-tuples with ij taking

values in {1, 2, . . . , D}.
(2) The symbol ı̂ will indicate the string ı̂ := {in−1in−2 · · · i1i0} ∈ �n

D; the two strings i and
ı̂ are related by ij = ı̂n−1−j ,∀j ∈ {0, . . . , n − 1}.

The atoms of the partitions E[0,n−1] describe segments of trajectories up to time n encoded
by the atoms of E that are traversed at successive times; the volumes µi = µ(Ei)

correspond to probabilities for the system to belong to the atoms Ei0 , Ei1 , . . . , Ein−1 at
successive times 0 � j � n − 1. The richness in diverse trajectories, that is the degree of
irregularity of the motion (as seen with the accuracy of the given coarse graining) correspond
intuitively to our idea of ‘complexity’ and can be measured by the Shannon entropy [16]
Sµ(E[0,n−1]) := −∑i∈�n

D
µi log µi.

In the long run, the partition E attributes to the dynamics an entropy per unit time step
hµ(T , E) := limn→∞ 1

n
Sµ(E[0,n−1]).

This limit is well defined [7] and the ‘average entropy production’ hµ(T , E) measures
how predictable the dynamics is on the coarse-grained scale provided by the finite partition
E . To remove the dependence on E , the KS entropy hµ(T ) of (X , µ, T ) is defined as the
supremum over all finite measurable partitions [7, 16] hµ(T ) := supE hµ(T , E).

5.2. Dynamics and information in the quantum setting

From an algebraic point of view, the difference between a ‘quantum’ triplet (M, ω,	)

describing a quantum dynamical system and classical triplets like
(
L∞

µ (T2), ωµ,	
)

of section 2
or (DN , τN ,	N ) of section 2.1 is that ω and 	 are now a 	-invariant state, respectively an
automorphism over a non-commutative (C* or von Neumann) algebra of operators M [11].

• In standard quantum mechanics the algebra M is the von Neumann algebra B(H) of all
bounded linear operators on a suitable Hilbert space H. If H has finite dimension D,M
is the algebra of D × D matrices.

• The typical states ω are density matrices ρ, namely operators with positive eigenvalues
ρ� such that Tr(ρ) = ∑

� ρ� = 1. Given the state ρ, the mean value of any observable
X ∈ B(H) is given by ρ(X) := Tr(ρX).

• The ρ� of the previous point are interpreted as probabilities of finding the system in the
corresponding eigenstates. The uncertainty prior to the measurement is measured by the
von Neumann entropy of ρ given by H(ρ) := − Tr(ρ log ρ) = −∑� ρ� log ρ�.

• The usual dynamics on M is of the form 	(X) = UXU ∗, where U is a unitary operator.
If one has a Hamiltonian operator that generates the continuous group Ut = exp itH/h̄

then U := Ut=1 and the time evolution is discretized by considering powers Uj .
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The idea behind the notion of dynamical entropy is that information can be obtained
by repeatedly observing a system in the course of its time evolution. Due to the
uncertainty principle, or, in other words, to non-commutativity, if observations are intended
to gather information about the intrinsic dynamical properties of quantum systems, then non-
commutative extensions of the KS entropy ought first to decide whether quantum disturbances
produced by observations have to be taken into account or not.

Concretely, let us consider a quantum system described by a density matrix ρ acting on
a Hilbert space H. Via the wave packet reduction postulate, generic measurement processes
may reasonably well be described by finite sets Y = {y0, y1, . . . , yD−1} of bounded operators
yj ∈ B(H) such that

∑
j y∗

j yj = 11. These sets are called partitions of unity ( p.u., for the sake
of brevity) and describe the change in the state of the system caused by the corresponding
measurement process:

ρ �−→ �∗
Y(ρ) :=

∑
j

yjρy∗
j . (45)

It looks rather natural to rely on partitions of unity to describe the process of collecting
information through repeated observations of an evolving quantum system [18].

Our intention is now to introduce a quantum dynamical entropy [19], based on and
constructed by means of CS, and apply it to our families of discretized toral automorphisms.
We will show that this quantity does reduce to the Kolmogorov–Sinai invariant, but only for
time scales bounded by the logarithm of the discretization parameter N.

It is worth mentioning that the same result has been proved in [14] for two different
quantum dynamical entropies (called ALF and CNT entropy) applied to finite-dimensional
quantum counterparts of the hyperbolic family of UMG that we have considered within this
paper. The only hypothesis used in [14] to get the above-mentioned result consisted of a
dynamical localization property analogous to the one we proved in theorem 2.

As a consequence, the same results as [14], that is the convergence of ALF and CNT
entropy to the KS one, can also be obtained in the present framework.

5.3. CS-quantum entropies

In order to make the description of a quantum system closer to that of a classical one, the most
useful tool consists in using CS. The quantum measurement process itself can be depicted in
terms of CS in such a way that the classical property can be recovered in the semiclassical
limit.

Let (M, ω,	) be a (finite-dimensional) quantum dynamical system such as the ones
introduced in section 5.2, with N denoting the dimension of its Hilbert space H and (X , µ, T )

its classical counterpart, the latter endowed with a classical partition E = {E�}�=1,2,...,D on
it (see section 5.1). Introduce in such a system a family of coherent states endowed with
properties 2.1.

The map

I(C)(ρ) := N
∫

C

|CN (x)〉〈CN (x)|ρ|CN (x)〉〈CN (x)|µ(dx), (46)

for a measurable subset C ⊂ X and an operator ρ, is called an instrument [19]. The map
ρ �−→ I(C)(ρ) describes the change in the state ρ of the system caused by a C-dependent
measurement process (compare with (45)).

If we take the expectation of I(C)(ρ), that is µ(ρ)(C) : = ω[I(C)(ρ)], we get the
probability that a measurement of the system by the instrument (46) gives values in C, when the
pre-measurement state is ρ. If we wonder what is the probability that several measures, taken
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stroboscopically at times t0 = 0, t1 = 1, . . . , tn−1 = n − 1, give values in Ei0 , Ei1 , . . . , Ein−1 ,
we have to compose the instrument action (46) with the temporal evolution depicted in
section 5.2, obtaining

PCS
i0,i1,...,in−1

:= µ
(ρ)
t0,t1,...,tn−1

(
Ei0 × Ei1 × · · · × Ein−1

)
= ω

[
I
(
Ein−1

) ◦ 	 ◦ I
(
Ein−2

) ◦ 	 ◦ · · · ◦ I
(
Ei1

) ◦ 	 ◦ I
(
Ei0

)
(ρ)
]
. (47)

Using in (47) the expression for the dynamical evolution 	(X) = UXU∗ together with (46),
and replacing the expectation ω with the trace (see section 5.2), we obtain

PCS
i = PCS

i0,i1,...,in−1
= N n

∫
Ei0

∫
Ei1

· · ·
∫

Ein−1

〈CN (x0)|ρ|CN (x0)〉

×
n−1∏
j=1

[|〈CN (xj )|U |CN (xj−1)〉|2]µ(dx0)µ(dx1) · · · µ(dxn−1), (48)

where we have used the normalization property for the state |CN (xn−1)〉 and the notation
given in definition 5.1 for the strings i.

These quantities can be seen as quantum analogue to the classical probability µi of
section 5.1 (in particular they sum up to 1) and thus can be used in computing a Shannon
entropy, depending on the given dynamics U, the instrument (46), the classical partition E , the
initial state ρ and the considered time of measuring n, whose expression is

S(U, I, E, ρ, n) := −
∑
i∈�n

D

PCS
i logPCS

i . (49)

The CS quantum entropy [19] is defined as the ‘average production’ in the long run of the last
quantity

H(U, I, E, ρ) := lim
n→∞

1

n
S(U, I, E, ρ, n) (50)

and it is decomposable into two components. The first, called measurement CS quantum
entropy, is independent of the dynamics, originated by the pure measurement process, and
obtained by replacing the unitary operator U in (50) with the identity on H; its expression is

Hmeas(I, E, ρ) := H(11N , I, E, ρ). (51)

The second amount is the remaining part

Hdyn(U, I, E, ρ) = H(U, I, E, ρ) − Hmeas(I, E, ρ) (52)

and is supposed to incorporate the dynamic dependence.

5.4. CS entropies for discrete classical systems

The quantum entropy of the last section can be seen as an algebraic quantity, and needs
nothing more than the algebraic framework already developed in sections 2–4, in order to be
defined. In particular, we are going to estimate the CS entropy of discrete classical systems
(DN , τN ,	N ) using the lattice states of definition 2.1.

Theorem 3. Let (T2, µ, T ) be the classical dynamical system of section 2, which is the
continuous limit of a sequence of finite-dimensional discrete dynamical systems (DN , τN ,	N ).
If

(1) WT,N is the unitary evolution operator of (27);
(2) I in the instrument (46) constructed with the LS of definition 2.1;
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(3) E = {E0, E1, . . . , ED−1} is a finite measurable partition of T
2;

(4) ρ is the tracial state 1
N 11N ;

then there exists an α such that

lim
n,N→∞
n<α log N

1

n
|S(WT,N , I, E, ρ, n) − Sµ(E[0,n−1])| = 0.

In order to prove theorem 3, we need the following auxiliary result.

Lemma 5.1. Suppose we have a sequence {gN } of L2
µ(T2) functions such that ‖gN‖2 � 1,

∀N ∈ N
+ (‖·‖2 meaning the L2

µ(T2)-norm).
Using the quantities KN,n (x,y) of definition 4.2 we have that, for any given A and B

measurable subsets of T
2 and N large enough, it holds

RN :=
∣∣∣∣∫

B

µ(dx)gN(x)N
∫

A

µ(dy)|KN,1 (x,y) |2 −
∫

B∩T −1(A)

µ(dx)gN(x)

∣∣∣∣
� εB(N),

where εB(N) −→ 0 with N −→ ∞.

The symbol εB does not imply any dependence of the bounding term εB on the subset B;
it is just a way of writing that will be of use in the following.

Proof of lemma 5.1. Resorting to the use of the characteristic functions XA and XB , using
triangular inequality and collecting terms, RN can be rewritten as

RN �
∫

T
2
µ(dx)|XB(x)gN(x)| ·

∣∣∣∣N ∫
T

2
µ(dy)XA(y)

∣∣KN,1 (x,y)
∣∣2 − XT −1(A)(x)

∣∣∣∣
=
$$$$XBgN

[
N
∫

T
2
µ(dy)XA(y)|KN,1(·,y)|2 − XA(T (·))

]$$$$
1

,

and using the Cauchy–Schwartz inequality

�‖XBgN‖2 ·
$$$$N ∫

T
2
µ(dy)XA(y)|KN,1(·,y)|2 − XA(T (·))

$$$$
2

. (53)

Now we use the hypothesis, so that

‖XBgN‖2
2 =

∫
B

|gN(x)|2µ(dy) � ‖gN‖2
2 � 1. (54)

Putting together (53) and (54) and using proposition 4.1 (with f = XA and n = 1), we get the
result. �

We are now in position to conclude with:

Proof of theorem 3. Let us start to compute the expectation PCS
i . In terms of the quantity

introduced in points (1)–(4) of the statement, equation (48) can be rewritten as

PCS
i = N n−1

∫
Ei0

∫
Ei1

· · ·
∫

Ein−1

〈CN (x0)|11N |CN (x0)〉

×
n−1∏
j=1

[|〈CN (xj )|WT,N |CN (xj−1)〉|2]µ(dx0)µ(dx1) · · · µ(dxn−1)
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and using the normalization property for the state |CN (x0)〉 and resorting to definition 4.2

=
∫

Ein−1

· · ·
∫

Ei1

∫
Ei0

µ(dxn−1) ×
n−1∏
j=1

[N |KN,1(xj ,xj−1)|2µ(dxj−1)]. (55)

Now we start an iteratation procedure, consisting of two points.
(1) consider the function

gN(x1) :=
∫

Ein−1

· · ·
∫

Ei3

∫
Ei2

n−1∏
j=2

[N |KN,1(xj ,xj−1)|2µ(dxj )], (56)

all the factors inside the integrals of (56) are positive, so that extending the integration domain
and giving the form of KN,1(xj ,xj−1) explicitly, we get the bound

gN(x1) �
∫

T
2
· · ·
∫

T
2

∫
T

2

n−1∏
j=2

[N |〈CN (xj ),WT,NCN (xj−1)〉|2µ(dxj )] = 1

from completeness and normalization, so that it follows ‖gN‖2 � 1.
(2) By means of (56), equation (55) can be rewritten as

PCS
i =

∫
Ei1

µ(dx1)gN(x1)N
∫

Ei0

µ (dx0) |KN,1(x1,x0)|2.

Now lemma 5.1 guarantees that there exists a positive sequence εEi1
(N) such that∣∣∣∣∣PCS

i −
∫

Ei1 ∩T −1(Ei0)
µ(dx1)gN(x1)

∣∣∣∣∣ � εEi1
(N),

with εEi1
(N) −→ 0 for N −→ ∞. By iterating this procedure (n − 1) times (consisting in

isolating a single KN,1(xj ,xj−1) and grouping all the others in a single bounded function
gN(xj )) and using the triangle inequality for | · |, we finally arrive at the result∣∣PCS

i − µ
(
Ein−1 ∩ T −1

(
Ein−2

) ∩ · · · ∩ T 1−n
(
Ei0

)) ∣∣ = ∣∣PCS
i − µı̂

∣∣ � ε(N),

with

ε(N) :=
n−1∑
�=1

εEi�
(N) −→ 0 for N −→ ∞, (57)

µj meaning the classical probability of section 4.1 and ı̂ denoting the string i reversed, as in
definition 5.1.2.

We now define two density matrices, with the aim of computing their von Neumann
Entropy (see section 5.2), that are both diagonal in the basis {|i〉}i∈�n

D
of the Dn-dimensional

Hilbert space HDn :

ρ :=
∑
i∈�n

D

µı̂|i〉〈i|, σ :=
∑
i∈�n

D

PCS
i |i〉〈i|.

Resorting to the trace norm ‖A‖1 := Tr|A | = Tr
√

A†A, we use (57) to estimate ‖ρ − σ‖1,
that is

�(n) := ‖ρ − σ‖1 � Dnε(N).

Finally, by the continuity of the von Neumann entropy [29], we get

|H(ρ) − H(σ)| � �(n) log Dn + η(�(n)),
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that is |S(WT,N , I, E, ρ, n) − Sµ(E[0,n−1])| � �(n) log Dn + η(�(n)); indeed the two von
Neumann entropies H(ρ) and H(σ) are nothing but the Shannon entropy of the refinements
E[0,n−1] of the classical partition (see section 4.1), respectively the Shannon entropy (49)
leading to the CS-quantum entropy.

Since, from n � α log N,Dn � Nα log D , if we want the bound Dnε(N) to converge to
zero with N −→ ∞, the parameter α has to be chosen accordingly. �

By means of theorem 3, a positive CS-entropy production is then associated with discrete
systems whose continuous limit exhibits a positive KS-entropy production, which correspond
in turn to the sum of all positive Lyapunov exponents of the continuous classical system, as
stated by Pesin’s theorem [15].

This positive CS-entropy production is entirely due to the dynamical component
Hdyn(WT,N , I, E, ρ) of (52), being the measurement CS entropy (51) equal to zero, as stated
in the next proposition:

Proposition 5.1. Let I and E be the instrument, respectively the finite measurable partition
of the statement of theorem 3 and let ρ be the tracial state 1

N 11N . There exists an α′ such that

lim
n,N→∞

n<α′ log N

1

n
S(11N , I, E, ρ, n) = 0.

Proof. Performing a proof completely analogous to the one for theorem 3, we find an α′ such
that

lim
n,N→∞

n<α′ log N

1

n
|S(11N , I, E, ρ, n) − Sµ(E ′

[0,n−1])| = 0, (58)

with E ′
[0,n−1] now given by E ′

[0,n−1] := ∨n−1
j=0 11j (E) = E

∨
E
∨ · · ·∨ E (see section 5.1), so

that

Sµ(E ′
[0,n−1]) = Sµ(E) � log D (59)

independent of n.
Now we use the triangular inequality together with (59), obtaining

1

n
S(11N , I, E, ρ, n) � 1

n
|S(11N , I, E, ρ, n) − Sµ(E ′

[0,n−1])| +
log D

n
, (60)

and so the result follows from (58). �

6. Conclusions

In this work, we studied the footprints of chaos present in classical dynamical systems on the
two-dimensional torus after a discretization has forced these systems to move on a regular
lattice of spacing 1

N
, with finite number of sites N2.

Discretizing is similar to quantizing; in particular, as for the classical limit h̄ → 0, we
have set up a solid theoretical framework to discuss the continuous limit N → ∞.

Inspired by the semiclassical analysis, we developed an algebraic discretization technique
by mimicking the well-known anti-Wick schemes of quantization, in particular we made use
of a family of suitably defined lattice states with properties that, in a quantum setting, are
typical of coherent states.
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The result is the appearance of a logarithmic time scale when the discrete hyperbolic
systems tend to their continuous limit; namely, the continuous and discrete dynamics agree up
to a breaking time which is proportional to the logarithm of the lattice spacing.

We also used the entropy production as a parameter of chaotic behaviour. In particular,
the notion of CS-quantum entropy has been used: this reproduces the classical metric entropy
of Kolmogorov and Sinai if applied to classical continuous systems.

The CS-quantum entropy does converge to the KS invariant, but on logarithmic time
scales too.
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Appendix A. Sketch of the proofs of propositions 3.1, 3.2 and 3.3

Proof of proposition 3.1. (1) Let us start by considering matrices with positive trace, that is
positive eigenvalues

(
λ, λ−1

)
; the case of negative trace will be considered in the next point (2).

In the (non-orthogonal) reference system (ĉ1, ĉ2) oriented along eigenvectors (|e+〉, |e−〉), the
time evolution is described by

(c1, c2)
T ±n−→
n∈N

(λ±nc1, λ
∓nc2), (A.1)

thus orbits are simply given by c1c2 = const, that in the reference system (x̂, ŷ) reads as (11),
indeed the relation between the coordinates in the two systems is(

x

y

)
=
(

1 cos β

0 sin β

)(
c1

c2

)
. (A.2)

Among these orbits, we choose the two that are tangent (and so closest) to the unit ball BT (0):
of course they remain tangent and closest even during evolution BT (0) �−→ BT (n) and so
they give us the right expression for the surrounding orbits of B

(n)
T , that is (13).

By means of (A.1) and (A.2) we have an expression for the ±n-evolved unit ball, that is
BT (n); among its surface’s points we choose the farthest ones and we determine their norm,
getting the expression for DT (n) contained in (14).

Now we use the expression sinh−1(q) = log(
√

q2 + 1 + q), that holds for all q > 0, in
particular for q = (λn − λ−n)/sin β (sin β > 0), so that from (14) we get for DT (n) the
expression given by (15) that shows the monotonicity in n of this function; this monotonicity,
together with the definitions (10) of B

(n)
T , gives us the equivalence between D

(n)
T and DT (n).

The linear matrix action T maps the unit ball BT (0) in the ellipse BT (1) and DT (1) is its
major semi-axis; from definition 2.2, we have

η2 = sup
|v〉∈R

2

〈v|T †T |v〉 = sup
|v〉∈R

2

‖T ∣∣v〉‖2
R

2 = [DT (1)]2,

so that η = DT (1) and (12) follows from expression (14), with n = 1.
Expressions in (16) can be easily deduced from (14).

(2) Let us now note that every map T, whose trace is negative, may be written as the composition
of −112 (the identity map) with the map −T , which has positive trace; the same holds true for
the iterates {T k}k odd. Since multiplying by −112 amounts to performing the transformation
(x, y) �−→ (−x,−y), both the orbits (11) and the surrounding surface (12), which exhibit
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a central symmetry, remain the same for negative trace maps. The same argument can be
applied to the diameter DT (n) of (14), which is invariant for coordinate reflection too. �

Proof of proposition 3.2. Let us consider matrices T with Tr T = 2, that is t = 1, the case
t = −1 being equivalent, as it is possible to prove in the same way as point (2) of the proof of
proposition 3.1. In the orthogonal reference system (x̂, ŷ) of the statement, the action of T n

is described by a matrix in Jordan canonical form, that is(
x

y

)
−→
T n

(
x ′

y ′

)
=
(

1 nJ ′

0 1

)(
x

y

)
, (A.3)

where J ′ = t12 − t21, thus orbits are simply given by y = const. In order to apply the argument
of point (2) of the proof of proposition 3.1, when t = −1, we endow this class of orbits with
a coordinate reflection symmetry, and this leads to equation (17).

Among these orbits, we choose the one that is tangent (and so closest) to the unit ball
BT (0): of course it remains tangent and closest even during evolution BT (0) �−→ BT (n) and
so it gives us the right expression for the surrounding orbit of B

(n)
T , that is (18).

By means of (A.3) we have an expression for the ±n-evolved unit ball, that is BT (n);
among its surface’s points we choose the farthest ones and we determine their norm, getting
the expression for DT (n) contained in (20), with J = |J ′|.

Using once more the expression sinh−1(q) = log(
√

q2 + 1 + q), that holds for all q > 0,
in particular for q = nJ , from (20) we get for DT (n) the expression given by (21); using
monotonicity, we get the equivalence D

(n)
T = DT (n).

From η = DT (1) (see proof of proposition 3.1), equation (19) can be obtained from
expression (20), with n = 1.

Expressions in (22) and (23) can be easily deduced and verified from (20). �

Proof of proposition 3.3. The semi-trace t of the matrix T can only assume values in{− 1
2 , 0, 1

2

}
, indeed all entries of T are integer and | t | < 1. We read from equation (8) that

t = cos φ and so we have for φ the only possible values
{± 2

3π,± 1
2π,± 1

3π
}
; each of these

values make the time evolution periodic, as can be deduced from equation (8). All these cases
are similar; we now prove the statement for t = 1

2 .
t = 1

2 : we have φ = ± 1
3π and so we get from equation (8) that T 3 = −112. The period of

evolution is six and the sequence of T power is equivalent to 112, T ,−T −1,−112,−T , T −1, 112

and so on.
By using equation (9) of definition 3.2 we see that the sequence {BT (n)}n∈N of an n-

evolved ball is equivalent to BT (0), BT (1), BT (−1), BT (0), BT (1), BT (−1), . . ., thus, the
sequence of diameter {DT (n)}n∈N is given by DT (0),DT (1),DT (−1), . . ..

As argued in the proof of proposition 3.1 (point (1)), DT (1) = η; moreover, DT (−1) = η

too. Indeed, as the spectra of |T | consist of the two eigenvalues (η, η−1), the same is true for
the spectra of |T −1|.

Using the last observation, the sequence of diameter becomes 0, η, η, 0, η, η, . . . and so
equations (24)–(25) hold true for the case t = 1

2 .
The cases t = − 1

2 and t = 0 can be proved in a similar way. �
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